Supernovarest uit 1006 geeft aanwijzing voor ontstaan kosmische straling

Supernovarest uit 1006 geeft aanwijzing voor ontstaan kosmische straling

Zeer gedetailleerde nieuwe waarnemingen met ESO’s Very Large Telescope (VLT) van het restant van een duizend jaar oude supernova hebben aanwijzingen opgeleverd omtrent het ontstaan van de kosmische straling. Voor het eerst wijzen de waarnemingen erop dat snel bewegende deeltjes in de supernovarest de voorlopers van deze straling zijn. De resultaten verschijnen op 14 februari 2013 in het tijdschrift Science.

In het jaar 1006 verscheen een nieuwe ster aan de zuidelijke hemel, waarvan talrijke beschrijvingen bestaan. Hij werd vele malen helderder dan de planeet Venus en benaderde misschien zelfs de helderheid van de maan. Op zijn hoogtepunt was de ster zo helder dat hij schaduwen wierp en overdag te zien was. Inmiddels weten astronomen dat dit een supernova is geweest – een exploderende ster. Op de plek in het sterrenbeeld Wolf waar de supernova verscheen, is een gloeiende, uitdijende ring van materiaal ontdekt die het restant van de enorme explosie vormt.

Al geruime tijd bestaat het vermoeden dat zulke supernovaresten ook de plaatsen zijn waar een deel van de kosmische straling – zeer energierijke deeltjes die met bijna de snelheid van het licht van buiten het zonnestelsel komen – ontstaat. Maar tot nu toe was onduidelijk hoe dat precies in zijn werk gaat.

Een team van astronomen, onder leiding van Sladjana Nikolić (Max-Planck-Institut für Astronomie, Heidelberg, Duitsland [1]), heeft nu het VIMOS-instrument van de VLT gebruikt om het duizend jaar oude restant van de supernova van 1006 nauwkeuriger dan ooit te onderzoeken. De astronomen wilden vooral weten wat er gebeurt bij het zogeheten schokfront, de plek waar het materiaal dat met hoge snelheid door de supernova is uitgestoten zich een weg baant door de vrijwel stilstaande interstellaire materie. Dit snel uitdijende schokfront is vergelijkbaar met de supersone knal die optreedt als een vliegtuig door de geluidsbarrière gaat en een voor de hand liggende kandidaat-deeltjesversneller.

Voor het eerst heeft het team niet alleen informatie verkregen over het schokmateriaal op één punt, maar ook in kaart gebracht hoe de eigenschappen van het uitgestoten gas langs het schokfront verschillen. Dat heeft interessante informatie opgeleverd.

De resultaten waren verrassend. Ze wijzen erop dat er in het schokgebied vele snel bewegende protonen in het gas aanwezig waren [2]. Hoewel deze protonen niet de gezochte energierijke straling zélf zijn, kunnen zij wel de ‘kiemdeeltjes’ zijn geweest die na interacties met het schokfrontmateriaal de vereiste extreem hoge energieën hebben verkregen om als kosmische straling de ruimte in te vliegen.

Nikolić legt uit: ‘Het is voor het eerst dat we gedetailleerd hebben kunnen kijken naar wat er in en rondom het schokfront van een supernova gebeurt. We hebben aanwijzingen gevonden dat er een gebied is dat wordt verhit op de manier die je verwacht als er protonen aanwezig zijn die energie van direct achter het schokfront afvoeren.

Bij dit onderzoek is voor het eerst een zogeheten integraalveldspectrograaf [3] gebruikt om de eigenschappen van de schokfronten van supernovaresten zo gedetailleerd te onderzoeken. Het team wil deze methode ook op andere restanten gaan toepassen.

Mede-auteur Glenn van de Ven van het Max-Planck-Institut für Astronomie concludeert: ‘Deze nieuwe observationele aanpak zou wel eens de sleutel kunnen zijn tot het oplossen van het vraagstuk van het ontstaan van de kosmische straling in supernovaresten.

Noten

[1] Dit nieuwe bewijs dook op bij een data-analyse die Sladjana Nikolić (Max-Planck-Institut für Astronomie) heeft gedaan als onderdeel van haar promotie-onderzoek aan de Universiteit van Heidelberg. 

[2] Deze protonen worden suprathermisch genoemd, omdat ze veel sneller bewegen dan je op grond van de temperatuur van het materiaal zou verwachten.

[3] Dit wordt bereikt door gebruik te maken van de zogeheten integraalveldeenheid van VIMOS. Daarmee wordt het licht dat in elke pixel wordt geregistreerd ontleed in zijn samenstellende kleuren en als afzonderlijk spectrum vastgelegd. Door deze spectra stuk voor stuk te analyseren, wordt een kaart verkregen van de snelheden en chemische eigenschappen van elk gedeelte van het object.

Meer op de Nederlandstalige ESO-website